Upregulation of soluble vascular endothelial growth factor receptor type 1 by endogenous prostacyclin inhibitor coupling factor 6 in vascular endothelial cells: a role of acidosis-induced c-Src activation

作者:Echizen Takashi; Osanai Tomohiro; Ashitate Toshihiro; Yokoyama Hiroaki; Shibutani Shuji; Tanaka Makoto; Tomita Hirofumi; Magota Koji; Okumura Ken*
来源:Hypertension Research, 2009, 32(3): 182-187.
DOI:10.1038/hr.2008.24

摘要

Vascular endothelial growth factor (VEGF) is a well-known promoter of angiogenesis, but its receptor VEGFR-1 and a soluble short form of VEGFR-1 (sFlt-1) play a negative role in the VEGF signal pathway by trapping VEGF. We recently showed that endogenous prostacyclin inhibitor coupling factor 6 (CF6) forces the clockwise rotation of F1 motor of plasma membrane adenosine triphosphate synthase and induces intracellular acidosis and c-Src activation. We investigated the role of CF6 in regulation of sFlt-1, and its mechanism in human umbilical vein endothelial cells. The ratio of sFlt-1 to glyceraldehyde 3-phosphate dehydrogenase mRNA was increased at 24 h by 1.59 /- 0.29-fold by 10(-7) M CF6 (P<0.05), concomitantly with the increases in intercellular adhesion molecule-1 and lectin-like oxidized low-density lipoprotein receptor-1 and no change in VEGF-A. When the dose of CF6 was increased to 10(-6) M, no further increase in sFlt-1 mRNA was observed. The release of sFlt-1 protein was increased by 1.72 /- 0.24-fold (P<0.05) at 48 h after exposure to CF6 at 10(-7) M, and it was blocked by pretreatment with anti-CF6 antibody. The immunoreactive bands for sFlt-1 and VEGFR-1 were both increased by CF6 to similar degrees. Pretreatment with PP1, an inhibitor of c-Src, and 10(-5) M efrapeptin, an inhibitor of F1 motor, inhibited CF6-induced increases in expression and release of sFlt-1 (P<0.05). In mice overexpressing CF6, the plasma level of sFlt-1 was increased by 1.36 /- 0.29-fold compared with that in wild-type mice (P<0.05). These indicate that CF6 might increase the expression and release of sFlt-1 in the vessels through acidosis-induced c-Src activation.

  • 出版日期2009-3