Advantages of Orthogonal Folding of Single Polymer Chains to Soft Nanoparticles

作者:Moreno Angel J*; Lo Verso Federica; Sanchez Sanchez Ana; Arbe Arantxa; Colmenero Juan; Pomposo Jose A
来源:Macromolecules, 2013, 46(24): 9748-9759.
DOI:10.1021/ma4021399

摘要

We investigate, by means of computer simulations, the formation of soft nanoparticles by irreversible intramolecular cross-linking of homofunctional polymer precursors in good solvent. Simulations reveal that the early and intermediate stages of the cross-linking process are dominated by bonding at short contour distances. Because of the initial self-avoiding character of the precursor, bonding at long contour distances, which is the efficient mechanism for global compactation, is a rare event that essentially occurs in the late stage of cross-linking. Thus, irreversible cross-linking of precursors with identical molecular weight and linker fraction produces both compact and sparse objects. This is confirmed by a detailed analysis of the size and shape distribution of the fully cross-linked nanoparticles. We also investigate intramolecular cross-linking of heterofunctional polymers with two species of orthogonal linkers, bonding between distinct species being forbidden. It is found that simultaneous cross-linking of both species and sequential cross-linking (activation of one species after full cross-linking of the other) lead to the same structural properties for the resulting nanoparticles. The heterofunctional nanoparticles are on average smaller and more spherical than the homofunctional counterparts, though still a significant fraction of sparse objects is found. The simulation results are compared with results from SEC/MALLS and SAXS experiments in real polymeric nanoparticles.

  • 出版日期2013-12-24