摘要

In this paper, the spallation process for the ductile metals under plane shock loading is discussed in theory. By employing the phase transition theory and non-equilibrium theory, the spallation process may be understood as a result of the diffusion and agglomeration of the generated vacancies. Through the detailed theoretical analysis, the following important points are concluded: (1) the spalling temperature, a new concept, is proposed first and the appearance of spallation critical behavior is proved; (2) the quantitative grain size, tensile strain rate and temperature dependence of both the damage evolution rate and the void growth velocity is obtained; (3) the existence of a characteristic size for the voids and a characteristic stress at the void boundary is discovered first, and their magnitude depend on the vacancy excitation energy and the average volume of one vacancy; (4) the temperature of metal near the growing void is found to be high, possibly causing the metal to melt, and it decreases quickly with the distance away from the void; (5) the area of the plastic zone, surrounding one formed spherical void, is clarified; (6) the viewpoint is put forward that the void growth may arise from the agglomeration of vacancies rather than the emission of dislocations when the shocking temperature approaches spalling temperature. Most of the above theoretical results are novel and obtained first.

全文