A genetic algorithm for optimizing multi-pole Debye models of tissue dielectric properties

作者:Clegg J; Robinson M P*
来源:Physics in Medicine and Biology, 2012, 57(19): 6227-6243.
DOI:10.1088/0031-9155/57/19/6227

摘要

Models of tissue dielectric properties (permittivity and conductivity) enable the interactions of tissues and electromagnetic fields to be simulated, which has many useful applications in microwave imaging, radio propagation, and non-ionizing radiation dosimetry. Parametric formulae are available, based on a multi-pole model of tissue dispersions, but although they give the dielectric properties over a wide frequency range, they do not convert easily to the time domain. An alternative is the multi-pole Debye model which works well in both time and frequency domains. Genetic algorithms are an evolutionary approach to optimization, and we found that this technique was effective at finding the best values of the multi-Debye parameters. Our genetic algorithm optimized these parameters to fit to either a Cole-Cole model or to measured data, and worked well over wide or narrow frequency ranges. Over 10 Hz-10 GHz the best fits for muscle, fat or bone were each found for ten dispersions or poles in the multi-Debye model. The genetic algorithm is a fast and effective method of developing tissue models that compares favourably with alternatives such as the rational polynomial fit.

  • 出版日期2012-10-7