摘要

An accurate computational fluid dynamic simulation model is presented to quantitatively elaborate parameter trends for optimum active mixing in a microfluidic device due to the domain wall movement assisted transport of superparamagnetic bead rows above a magnetic microstripe-patterned exchange bias layer system using Comsol Multiphysics. The presented simulation model is capable to study the effect of the microfluidic device length scales, the diffusive properties of the diluted species to be mixed and the applied movement scheme of the SPB rows for active mixing. The results show a remarkable increase in the mixing velocity for larger molecules with small molecular diffusion coefficients. Hence, this mixing technique seems to be promising for the implementation in biosensing applications for lab-on-a-chip devices.

  • 出版日期2015-8