A novel chip-based parallel transfection assay to evaluate paracrine cell interactions

作者:Kuhn Elisabeth; Naschberger Elisabeth; Konrad Andreas; Croner Roland S; Britzen Laurent Nathalie; Jochmann Ramona; Muenstedt Helmut; Stuerzl Michael
来源:Lab on a Chip, 2012, 12(7): 1363-1372.
DOI:10.1039/c2lc20724a

摘要

The speed of gene function analyses in mammalian cells was significantly increased by the introduction of cell chip technology (reversely transfected cell microarray). However, the presently available technique is restricted to the analysis of autocrine effects of genes in the transfected cells. This limits the power of this method, as many genes are involved in heterotypic signaling both in physiologic and pathologic processes. At present, analyses of paracrine effects of transfected genes require trans-well or conditioned media approaches which are costly and time-consuming. Here, we present a novel method for the highly parallel analysis of paracrine gene functions on a chip. The basic idea was to adapt the cell chip technology to be performed with two different cell types which are differentially transfected: (1) an effector cell which is transfected with the genes of interest, and (2) an indicator cell in order to detect specific paracrine effects exerted from the transfected effector cells. Spot-to-spot diffusion of the paracrine mediators was prevented by matrix overlay, ultimately allowing 192 parallel tests for paracrine gene activations on one chip. In addition, we demonstrate the broad applicability and robustness of this technique using (1) various responder cell types, (2) various paracrine inducers, and (3) various indicator genes. The herein described approach allows for the first time a highly parallel analysis of paracrine gene functions and thus facilitates the characterization of genes involved in heterotypic cell communication in a broad range of research areas.

  • 出版日期2012