摘要

A fluorescence sensing material based on quantum dots with excellent optical properties and molecularly imprinted polymer (QDs@MIP) with specific recognition has been developed. First the surface of CdSe/ZnS QDs was modified with ionic liquids (ILs) by electrostatic interaction. The fluorescence sensing material was constructed from anchoring the MIP layer on IL modified CdSe/ZnS QDs by copolymerization, which had been developed for the detection of carbaryl in rice and Chinese cabbage. The MIP fluorescence was more strongly quenched by carbaryl than the non-imprinted polymer (NIP) fluorescence, which indicated that the QDs@MIP could selectively recognize the corresponding carbaryl. Furthermore, the developed QDs@MIP method was validated by HPLC and ELISA respectively, and the results of these methods were well correlated (R-2 = 0.98). The fluorescence sensing material had obvious advantages, such as being easily prepared and having specific recognition and photostability. The developed method was simple and effective for the detection of carbaryl. And, it could also provide the technical support for the rapid detection in food safety fields.