Air sensitivity of MoS2, MoSe2, MoTe2, HfS2, and HfSe2

作者:Mirabelli Gioele; McGeough Conor; Schmidt Michael; McCarthy Eoin K; Monaghan Scott; Povey Ian M; McCarthy Melissa; Gity Farzan; Nagle Roger; Hughes Greg; Cafolla Attilio; Hurley Paul K; Duffy Ray
来源:Journal of Applied Physics, 2016, 120(12): 125102.
DOI:10.1063/1.4963290

摘要

A surface sensitivity study was performed on different transition-metal dichalcogenides (TMDs) under ambient conditions in order to understand which material is the most suitable for future device applications. Initially, Atomic Force Microscopy and Scanning Electron Microscopy studies were carried out over a period of 27 days on mechanically exfoliated flakes of 5 different TMDs, namely, MoS2, MoSe2, MoTe2, HfS2, and HfSe2. The most reactive were MoTe2 and HfSe2. HfSe2, in particular, showed surface protrusions after ambient exposure, reaching a height and width of approximately 60 nm after a single day. This study was later supplemented by Transmission Electron Microscopy (TEM) cross-sectional analysis, which showed hemispherical-shaped surface blisters that are amorphous in nature, approximately 180-240 nm tall and 420-540 nm wide, after 5 months of air exposure, as well as surface deformation in regions between these structures, related to surface oxidation. An X-ray photoelectron spectroscopy study of atmosphere exposed HfSe2 was conducted over various time scales, which indicated that the Hf undergoes a preferential reaction with oxygen as compared to the Se. Energy-Dispersive X-Ray Spectroscopy showed that the blisters are Se-rich; thus, it is theorised that HfO2 forms when the HfSe2 reacts in ambient, which in turn causes the Se atoms to be aggregated at the surface in the form of blisters. Overall, it is evident that air contact drastically affects the structural properties of TMD materials. This issue poses one of the biggest challenges for future TMD-based devices and technologies. Published by AIP Publishing.

  • 出版日期2016-9-28