A hybrid lead iodide perovskite and lead sulfide QD heterojunction solar cell to obtain a panchromatic response

作者:Etgar Lioz*; Gao Peng; Qin Peng; Graetzel Michael; Nazeeruddin Mohammad Khaja
来源:Journal of Materials Chemistry A, 2014, 2(30): 11586-11590.
DOI:10.1039/c4ta02711f

摘要

We report for the first time on co-sensitization between CH3NH3PbI3 perovskite and PbS quantum dots (QDs) in a heterojunction solar cell to obtain a panchromatic response from the visible to near IR regions. Following the deposition of the sensitizers on a TiO2 film, an Au thin layer is evaporated on top as a back contact. Importantly, the CH3NH3PbI3 nanoparticles and the PbS QDs used here simultaneously play both the role of a light harvester and a hole conductor, rendering superfluous the use of an additional hole transporting material. The nnesoscopic CH3NH3PbI3 (perovskite)-PbS (QD)/TiO2 heterojunction solar cell shows an impressive short circuit photocurrent (J(sc)) of 24.63 mA cm(-2), much higher than those of the individual CH3NH3PbI3 perovskite and the PbS QD solar cells. The advent of such co-sensitization mesoscopic heterojunction solar cells paves the way to extend the absorbance region of the promising low cost, high-efficiency perovskite based solar cells.

  • 出版日期2014-8-14