摘要

The aim of present investigation is to study the buckling and postbuckling response and strengths under positive and negative in-plane shear loads of simply-supported composite laminate with various shaped cutouts (i.e., circular, square, diamond, elliptical-vertical and elliptical-horizontal) of various sizes using finite-element method. The FEM formulation is based on the first order shear deformation theory which incorporates geometric nonlinearity using von Karman's assumptions. The 3-D Tsai-Hill criterion is used to predict the failure of a lamina while the onset of delamination is predicted by the interlaminar failure criterion. The effect of cutout shape, size and direction of shear load on buckling and postbuckling responses, failure loads and failure characteristics of quasi-isotropic [i.e., (+45/-45/0/90)(2s)] laminate has been discussed. In addition, the effect of composite lay-up [i.e., (+45/-45/0/90)(2s), (45/-45)(4s) and (0/90)(4s)] has also been reported. It is observed that the cutout shape has considerable effect on the buckling and postbucking behaviour of the quasi-isotropic laminate with large size cutout. It is also observed that the direction of shear load and composite lay-up have substantial influence on strength and failure characteristics of the laminate.

  • 出版日期2010-11