摘要

Tribological characteristics and wear mechanisms of gas-nitrided layer on a 2Cr13 steel in vacuum were investigated using a pin-on-disk type tribometer under self-mating dry sliding conditions with various normal loads and sliding velocities. The wear mechanisms involved were investigated by microscopic observations of the worn surfaces, the wear debris, and the corresponding cross sections. Experimental results show that for both sliding velocities of 0.2 and 1.6 m s(-1), friction forces are relatively stable in the case of lower loads (a parts per thousand currency sign50 N), whereas become unstable and show high fluctuations under higher loads (> 50 N). Wear mechanisms of the nitrided layer in vacuum are different for the lower and the higher sliding velocities. In the former case, mild abrasive wear dominates. In the latter case, a transition takes place from mild adhesive wear to severe adhesive or even delamination wear, with increasing normal load from 10 to 90 N.