摘要

A polyol-based ester was synthesized from biomass-derived bio-oil for application as a biolubricant. The bio-ester is biodegradable, non-toxic, and does not require mineral oil usage. Levulinic acid (LA), a major component obtained from bio-oil, was used for the catalytic esterification with two types of polyols, i.e., trimethylolpropane (TMP) and pentaerythritol (PE), in the presence of alumina-supported Cu(II), Co(II), and Fe(II) complexes as catalysts. Alumina-supported Cu(II), Co(II), and Fe(II) complexes [Cu(Tyr)(GA)]CI-alumina, [Co(Tyr)(Amp)]CI-alumina, and [Fe(Tyr)(Amp)]CI-alumina were synthesized by the reaction of ligands [L-tyrosine (Tyr), Gallic acid (GA), and 2-aminopyridine (Amp)] with metal chloride salts. The catalysts were characterized by elemental analyses (CHN), magnetic susceptibility, Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analysis/differential thermal analysis (TGA/DTA), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) techniques. Catalytic performances of the synthesized complexes were investigated via esterification of levulinic acid with trimethylolpropane and pentaerythritol. In addition, the two best catalysts, [Cu(Tyr)(GA)]CI and [Co(Tyr)(Amp)]CI-alumina, were further employed for the in situ hydrogenation of levulinate esters at 120 degrees C to 130 degrees C and 7 bar to 8 bar H-2 pressure for upgrading in a specially designed reactor. The alumina-supported catalysts were active, reusable, and exhibited their efficiency as heterogeneous catalysts for esterification and hydrogenation reactions for synthesizing ester-based oils.

  • 出版日期2018