摘要

In this paper, we propose two mathematical models concerning continuous and, respectively, impulsive pest control strategies. In the case in which a continuous control is used, it is shown that the model admits a globally asymptotically stable positive equilibrium under appropriate conditions which involve parameter estimations. As a result, the global asymptotic stability of the unique positive equilibrium is used to establish a procedure to maintain the pests at an acceptably low level in the long term. In the case in which an impulsive control is used, it is observed that there exists a globally asymptotically stable susceptible pest-eradication periodic solution on condition that the amount of infective pests released periodically is larger than some critical value. When the amount of infective pests released is less than this critical value, the system is shown to be permanent, which implies that the trivial susceptible pest-eradication solution loses its stability. Further, the existence of a nontrivial periodic solution is also studied by means of numerical simulation. Finally, the efficiency of continuous and impulsive control policies is compared.