A local uPAR-plasmin-TGF beta 1 positive feedback loop in a qualitative computational model of angiogenic sprouting explains the in vitro effect of fibrinogen variants

作者:Boas Sonja E M; Carvalhol Joao; van den Broek Marloes; Weijers Ester M; Goumans Marie Jose; Koolwijk Pieter; Merks Roeland M H*
来源:PLoS Computational Biology, 2018, 14(7): e1006239.
DOI:10.1371/journal.pcbi.1006239

摘要

In experimental assays of angiogenesis in three-dimensional fibrin matrices, a temporary scaffold formed during wound healing, the type and composition of fibrin impacts the level of sprouting. More sprouts form on high molecular weight (HMW) than on low molecular weight (LMW) fibrin. It is unclear what mechanisms regulate the number and the positions of the vascular-like structures in cell cultures. To address this question, we propose a mechanistic simulation model of endothelial cell migration and fibrin proteolysis by the plasmin system. The model is a hybrid, cell-based and continuum, computational model based on the cellular Potts model and sets of partial-differential equations. Based on the model results, we propose that a positive feedback mechanism between uPAR, plasmin and transforming growth factor beta 1 (TGF beta 1) selects cells in the monolayer for matrix invasion. Invading cells releases TGF beta 1 from the extracellular matrix through plasmin-mediated fibrin degradation. The activated TGF beta 1 further stimulates fibrin degradation and keeps proteolysis active as the sprout invades the fibrin matrix. The binding capacity for TGF beta 1 of LMW is reduced relative to that of HMW. This leads to reduced activation of proteolysis and, consequently, reduced cell ingrowth in LMW fibrin compared to HMW fibrin. Thus our model predicts that endothelial cells in LMW fibrin matrices compared to HMW matrices show reduced sprouting due to a lower bio-availability of TGF beta 1.

  • 出版日期2018-7