摘要

Human norovirus is a leading cause of viral gastroenteritis worldwide. Rapid detection could facilitate control, however widespread point-of-care testing is infrequently done due to the lack of robust and portable methods. Recombinase polymerase amplification (RPA) is a novel isothermal method which rapidly amplifies and detects nucleic acids using a simple device in near real-time. An RT-RPA assay targeting a recent epidemic human norovirus strain (GII.4 New Orleans) was developed and evaluated in this study. The assay successfully detected purified norovirus RNA from multiple patient outbreak isolates and had a limit of detection of 3.40 +/- 0.20 log(10) genomic copies (LGC), which is comparable to most other reported isothermal norovirus amplification methods. The assay also detected norovirus in directly boiled stool, and displayed better resistance to inhibitors than a commonly used RT-qPCR assay. The assay was specific, as it did not amplify genomes from 9 non-related enteric viruses and bacteria. The assay detected norovirus in some samples in as little as 6 min, and the entire detection process can be performed in less than 30 min. The reported RT-RPA method shows promise for sensitive point-of-care detection of epidemic human norovirus, and is the fastest human norovirus amplification method to date.

  • 出版日期2017-1-9