摘要

Prey-predator interactions have been studied extensively in terms of morphological and behavioural responses of prey to predation risk using diverse model systems. However, the underlying physiological changes associated with morphological, behavioural or life historical responses have been rarely investigated. Herein, we studied the effect of chronic predation risk on larval growth and metamorphosis of Hylarana indica and the underlying physiological changes in prey tadpoles. In the first experiment, tadpoles were exposed to a caged predator from Gosner stage 25-42 to record growth and metamorphosis. Further, whole body corticosterone (CORT) was measured to determine the physiological changes underlying morphological and life historical responses of these prey tadpoles. Surprisingly, tadpoles experiencing continuous predation risk grew and developed faster and metamorphosed at a larger size. Interestingly, these tadpoles had significantly lower CORT levels. In the second experiment, tadpoles were exposed to predation risk (PR) or PR + CORT from stage 25-42 to determine the role of CORT in mediating predator-induced responses of H. indica. Tadpoles facing continuous predation risk grew and developed faster and metamorphosed at a larger size reinforcing the results of the first experiment. However, when CORT was administered along with predation risk, tadpoles grew and developed slowly leading to delayed metamorphosis. Interestingly, growth and metamorphic traits of tadpoles exposed to PR + CURT were comparable to those of the control group indicating that exogenous CORT nullified the positive effect of predation risk. Apparently, CORT mediates predator-induced morphological responses of H. indica tadpoles by regulating their physiology.

  • 出版日期2017-9-15