摘要

A novel adjustable multifrequency axially polarized multilayer composite cylindrical transducer is developed in this paper. The transducer is composed of two parts: an actuator part and a sensor part. Each part is considered as a multilayer piezoelectric/elastic composite structure. The actuator part is utilized to actuate the transducer, while the senor part is used to adjust its dynamic characteristics through connecting to an external electric resistance. Based on the plane stress assumption, the radial vibration of this new kind of transducer is analyzed, and its input electric admittance is derived analytically. Comparisons with the earlier works are conducted to validate the theoretical solution. Furthermore, numerical analysis is performed to study the effects of the external electric resistance on the transducer's dynamic characteristics, such as resonance and anti-resonance frequencies, as well as the corresponding electromechanical coupling factor. Numerical results show that the multifrequency cylindrical transducer can be designed through adjusting the external electric resistance and the ratio of piezoelectric layer numbers between the actuator part and the sensor part. In addition, the optimized transducer can be proposed at the matching electric resistance. The proposed cylindrical transducer plays an important role in designing the cymbal transducer, which can be used in underwater sound projectors and ultrasonic radiators.