摘要

During the mode transition from the pure electric propulsion mode to the hybrid propulsion mode, clutch-based pre-transmission parallel hybrid electric vehicles are subject to drivability issues. These issues originate from the fact that in the clutch-based pre-transmission parallel hybrid powertrain (CPPHP) configuration, the clutch connects the engine and the motor. Without a carefully designed mode transition control that coordinates the engine torque, clutch torque and motor torque, torque sluggishness and surges occur during the mode transition, and residual torque oscillation occurs after the mode transition. In this paper, a discrete-time model predictive control (DMPC)-based controller is proposed to address these drivability-related issues. Modeling improvements and novel drivability-related indices and constraints are all taken into consideration in the design of the discrete-time model predictive controller. Furthermore, by using discrete-time Laguerre functions and introducing the equilibrium state and the ranking of constraints, an explicit solution of the discrete-time model predictive controller is obtained. The calculation results demonstrate that the proposed controller can ensure a smooth and rapidly decaying torque difference during the mode transition, alleviating the residual torque oscillation after the mode transition and guaranteeing that the mode transition is completed within an acceptable duration.