摘要

Background Gastroesophageal reflux can cause high acidity in the esophagus and trigger heartburn and pain. However, because of the esophageal mucosal barrier, the acidity at the nerve terminals of pain-mediating C-fibers in esophageal mucosa is predicted to be substantially lower. We hypothesized that the esophageal dorsal root ganglia (DRG) C-fibers are activated by mild acid (compared to acidic reflux), and express receptors and ion channels highly sensitive to acid. Methods Extracellular single unit recordings of activity originating in esophageal DRG C-fiber nerve terminals were performed in the innervated esophagus preparation ex vivo. Acid was delivered in a manner that bypassed the esophageal mucosal barrier. The expression of mRNA for selected receptors in esophagus-specific DRG neurons was evaluated using single cell RT-PCR. Key Results Mild acid (pH = 6.5-5.5) activated esophageal DRG C-fibers in a pH-dependent manner. The response to mild acid at pH = 6 was not affected by the TRPV1 selective antagonist iodo-resiniferatoxin. The majority (7095%) of esophageal DRG C-fiber neurons (TRPV1positive) expressed mRNA for acid sensing ion channels (ASIC1a, ASIC1b, ASIC2b, and/or ASIC3), two-pore-domain (K2P) potassium channel TASK1, and the proton-sensing G-protein coupled receptor OGR1. Other evaluated targets (PKD2L1, TRPV4, TASK3, TALK1, G2A, GPR4, and TDAG8) were expressed rarely. Conclusions & Inferences Guinea pig esophageal DRG C-fibers are activated by mild acid via a TRPV1-independent mechanism, and express mRNA for several receptors and ion channels highly sensitive to acid. The high acid sensitivity of esophageal C-fibers may contribute to heartburn and pain in conditions of reduced mucosal barrier function.

  • 出版日期2015-6