A numerical study of the influence from architecture on the permeability of 3D-woven fibre reinforcement

作者:Tahir Mohammad Waseem; Stig Fredrik; Akermo Malin; Hallstrom Stefan*
来源:Composites Part A: Applied Science and Manufacturing , 2015, 74: 18-25.
DOI:10.1016/j.compositesa.2015.02.019

摘要

Various modelling aspects of the permeability of three-dimensional (3D) woven textile preforms are studied using computational fluid dynamics (CFD). The models are built using a recently developed technique able to generate close to authentic representations of 3D textile arrangements. One objective of the study is to investigate how parameters such as the tow architecture and the level of detail in the CFD models influence the results. A second objective is to investigate how the inter and intra-tow porosity affect the permeability. They are varied in a way that somewhat resembles how they would change during compaction, although compaction as such is not modelled. It is concluded that the intra-tow porosity has little effect on the overall permeability of a 3D-woven preform. Detailed modelling of local variation of the intra-tow porosity is thus redundant, which is also demonstrated. The inter-tow porosity, on the other hand, has a prominent influence on the overall permeability. The overall permeability is inherently anisotropic but when the inter-tow porosity is increased the permeability does not increase uniformly but becomes more isotropic. Good agreement is obtained between the numerical simulations and experiments performed in a parallel study.