摘要

The spin-orbit coupling (SOC) of four porphyrin-and quinoline-based compounds has been studied using Pauli-Breit SOC operator with one-and two-electron terms. The results revealed that the yield of singlet oxygen is affected by the spin-orbit coupling matrix element involving the emitting triplet and the perturbing singlet state. Investigated quinoline-based compounds have more high SOC values than those porphyrin-based compounds due to spin parallel electron pairs of oxygen. The open shell d(8) of metal Pt can induce the stronger exchange interactions than the closed shell p(6) of metal Mg, resulting in bigger SOC matrix element in quinoline-based Pt complex than in the quinoline-based Mg complex. Simultaneously, potential energy curves of the first excited sate and the first triplet sate have been calculated, which proves that all investigated complexes can induce singlet oxygen. These computational findings support quinolin-based compounds have high singlet oxygen yields and provide a rigorous basis for predicting the probability of singlet oxygen yields in plane-type molecules.

全文