摘要

A tradeoff between energy gain from foraging and safety from predation in refuges is a common situation for many herbivores that are vulnerable to predation while foraging. This tradeoff affects the population dynamics of the plant-herbivore-predator interaction. A new functional response is derived based on the Holling type 2 functional response and the assumption that the herbivore can forage at a rate that maximizes its fitness. The predation rate on the herbivore is assumed to be proportional to the product of the time that the herbivore spends foraging and a risk factor that reflects the habitat complexity; where greater complexity means greater interspersion of high food quality habitat and refuge habitat, which increases the amount of the edge zone between refuge and foraging areas, making foraging safer. The snowshoe hare is chosen as an example to demonstrate the resulting dynamics of an herbivore that has been intensely studied and that undergoes well-known cycling. Two models are studied in which the optimal foraging by hares is assumed, a vegetation-hare-generalist predator model and a vegetation-hare-specialist predator model. In both cases, the results suggest that the cycling of the snowshoe hare population will be greatly moderated by optimal foraging in a habitat consisting of interspersed high quality foraging habitat and refuge habitat. However, there are also large differences in the dynamics produced by the two models as a function of predation pressure.

  • 出版日期2014-5