Antheraea pernyi silk fibroin for targeted gene delivery of VEGF165-Ang-1 with PEI

作者:Ma, Caili*; Lv, Linlin; Liu, Yu; Yu, Yanni; You, Renchuan; Yang, Jicheng; Li, Mingzhong
来源:Biomedical Materials (Bristol), 2014, 9(3): 035015.
DOI:10.1088/1748-6041/9/3/035015

摘要

Vascularization is a crucial challenge in tissue engineering. One solution for this problem is to implant scaffolds that contain functional genes that promote vascularization by providing angiogenic growth factors via a gene delivery carrier. Poly(ethylenimine) (PEI) is a gene delivery carrier with high transfection efficiency but with cytotoxicity. To solve this problem, we utilized Antheraea pernyi silk fibroin (ASF), which has favorable cytocompatibility and biodegradability, RGD sequences and a negative charge, in conjunction with PEI, as the delivery vector for vascular endothelial growth factor (VEGF) 165-angiopoietin-1 (Ang-1) dual gene simultaneous expression plasmid, creating an ASF/PEI/pDNA complex. The results suggested that the zeta potential of the ASF/PEI/pDNA complex was significantly lower than that of the PEI/pDNA complex. Decreased nitrogen and increased oxygen on the surface of the complex demonstrated that the ASF had successfully combined with the surface of the PEI/pDNA. Furthermore, the complexes resisted digestion by nucleic acid enzymes and degradation by serum. L929 cells were cultured and transfected in vitro and improved cytotoxicity was found when the cells were transfected with ASF/PEI/pDNA compared with PEI/pDNA. In addition, the transfection efficiency and VEGF secretion increased. In general, this study provides a novel method for decreasing the cytotoxicity of PEI gene delivery vectors and increasing transfection efficiency of angiogenesis-related genes.