摘要

This paper deals with the classic problem of the synthesis of planar linkages for path generation. Based on the Fourier theory, the task curve and the synthesized four-bar coupler curve are regarded as the same curve if their Fourier descriptors match. Using Fourier analysis, a curve must be given as a function of time, termed a parametrization. In practical applications, different parametrizations can be associated with the same task and coupler curve, respectively; however, these parametrizations are Fourier analyzed to different Fourier descriptors, thus resulting in the mismatch of the task and coupler curve. In this paper, we present a parametrization-invariant method to eliminate the influence of parametrization on the values of Fourier descriptors by unifying given parametrizations to the arc length parametrization; meanwhile, a new design space decoupling scheme is introduced to separate the shape, size, orientation, and location matching of the task and four-bar curve, which leads naturally to an efficient synthesis approach.