摘要

Ice bands are frequently observed over marginal ice zones in polar seas. A typical ice-band pattern has a regular spacing of about 10 km and extends over 100 km in the marginal ice zone. Further, the long axis of an ice band lies to the left (right) with respect to the wind direction in the Northern (Southern) Hemisphere. Here, the study shows that the resonance between ice-band pattern propagation and internal inertia-gravity waves below the sea ice well explains the ice-band pattern formation. Internal waves are generated by the difference between the stress on the open water and the stress on ice-covered water. This in turn reinforces the formation of an ice-band pattern with a regular band spacing. Specifically, the authors have found the following: 1) A band spacing on the order of 10 km is selected by the resonance condition in which the ice-band pattern propagation speed coincides with the phase speed of internal inertia-gravity waves. 2) The ice bands tend to develop favorably when the wind direction and the band propagation direction are nearly parallel. The velocity acceleration caused by the periodic differential stress associated with the ice bands, driven by the wind parallel to the band propagation direction, is important. The wind direction may turn to the left (right) slightly in the Northern (Southern) Hemisphere as a result of the Coriolis force acting on ice. Satellite images confirmed that the band spacing of the ice-band pattern in the polar seas is consistent with this theory.

  • 出版日期2016-2