摘要

A low-noise area-efficient potentiostat design for nanopore applications is presented. By adopting a cascode amplifier and a Wilson current mirror, the input resistance is drastically decreased, which enables one to obtain a desirable bandwidth to detect DNA translocation events in nanopore sensors. A novel compensation technique is also proposed to relieve a deleterious effect by the input parasitic capacitances.

  • 出版日期2014-4-10