摘要

Using new approach proposed by Dynamic relaxation (DR) method, buckling analysis of moderately thick Functionally graded (FG) cylindrical panels subjected to axial compression is investigated for various boundary conditions. The mechanical properties of FG panel are assumed to vary continuously along the thickness direction by the simple rule of mixture and Mori-Tanaka model. The incremental form of nonlinear formulations are derived based on First-order shear deformation theory (FSDT) and large deflection von Karman equations. The DR method combined with the finite difference discretization technique is employed to solve the incremental form of equilibrium equations. The critical mechanical buckling load is determined based on compressive load-displacement curve by adding the incremental displacements in each load step to the displacements obtained from the previous ones. A detailed parametric study is carried out to investigate the influences of the boundary conditions, rule of mixture, grading index, radius-to-thickness ratio, length-to-radius ratio and panel angle on the mechanical buckling load. The results reveal that with increase of grading index the effect of radius-to-thickness ratio on the buckling load decreases. It is also observed that effect of distribution rules on the buckling load is dependent to the type of boundary conditions.

  • 出版日期2016-12