摘要

The present study focus on ICH prescribed stress degradation of ciclopirox olamine after precolumn derivatization. For establishing stability-indicating assay, the reaction solutions in which different degradation products were formed were mixed, and the separation was optimized by applying principle of QbD. A risk-analysis tools based on cause-effect risk assessment matrix with control-noise-experimentation (CNX) approach was utilized for identifying the high risk variable affecting the analytical attributes. Plackett Burman and central composite design was then used to screen and optimize experimental variables for DOE studies to resolve ciclopirox olamine and four of its degradation related impurities with good peak asymmetry and theoretical plates using C18 column. The method was validated according to ICH and ISO guidelines. To ensure reliability of the result, evaluation of risk profile, combined standard uncertainty and expanded uncertainty were also studied. One process related and four unknown degradation products were identified and characterized by LC-MS/MS study. The degradation pathways of degradants were proposed based on m/z values.

  • 出版日期2017-10

全文