摘要

Pseudomonas corrugata 28 represents a microorganism that can potentially be applied for in situ bioremediation of Cr(VI) contaminated sites. This strain combines a high resistance toward toxic Cr(VI) with the ability to reduce Cr(VI) to Cr(III) under oxic conditions. In this study, the aerobic reduction of Cr(VI) by Pseudomonas corrugata 28 was examined under different carbon and sulfur supply conditions to assess the influence of microbial carbon and sulfur metabolism on Cr(VI) reduction. The fate of reduced chromium was elucidated by investigating the speciation of chromium in solution as well as the interaction of chromium with bacterial surfaces. Reduction of Cr(VI) was found to be a metabolic process resulting mainly in the formation of dissolved organic Cr(III)-complexes. Small amounts of reduced chromium were weakly associated with bacterial surfaces. The formation of inorganic Cr(III)-precipitates was not indicated.

  • 出版日期2012