摘要

The reconstructed structure of Cu (100) surface induced by atomic N adsorption is studied by using scanning tunneling microscopy (STM). The 2D structure of copper boundary between neighbouring N covered islands is found to be sensitive to the growth conditions, e. g. N+ bombardment time and annealing temperature. The copper boundary experiences a transition from nano-scale stripe to nano-particle when the substrate is continuously annealed at 623 K for a longer time. A well-defined copper-stripe network can be achieved by precisely controlling the growth conditions, which highlights the possibility of producing new templates for nanofabrication.