摘要

A major drawback of renewable gasification technologies is contamination of the syngas produced with %26quot;tar%26quot;, which can induce fouling in downstream equipment. The effect of continuous injection of acetylene and hydrogen high-temperature flames into the blend of gases containing a tar model compound toluene in order to decompose the latter has been studied. The experimental results indicate that treatment of the reaction mixture with the acetylene and hydrogen oxy-flames promotes reforming of toluene into H(2) and CO. The same heating values of the flames result in different ratios between H(2) and CO; this points out on a difference in mechanism of that reforming implying an interaction between toluene and combustion products which include a large specter of intermediate species (radicals). A better understanding of these mechanisms will help to obtain an optimal ratio between external oxy-flame and internal combustion regularly employed to increase the temperature of the producer gas in order to decompose volatile organics and tars in it. Utilization of oxy-flames for high-temperature clean-up of producer gas (gasification products) is very similar to the application of plasma steam tested with positive results in semi-industrial gasification units.

  • 出版日期2012-2