A Rydberg quantum simulator

作者:Weimer Hendrik*; Mueller Markus; Lesanovsky Igor; Zoller Peter; Buechler Hans Peter
来源:Nature Physics, 2010, 6(5): 382-388.
DOI:10.1038/NPHYS1614

摘要

A universal quantum simulator is a controlled quantum device that reproduces the dynamics of any other many-particle quantum system with short-range interactions. This dynamics can refer to both coherent Hamiltonian and dissipative open-system evolution. Here we propose that laser-excited Rydberg atoms in large-spacing optical or magnetic lattices provide an efficient implementation of a universal quantum simulator for spin models involving n-body interactions, including such of higher order. This would allow the simulation of Hamiltonians of exotic spin models involving n-particle constraints, such as the Kitaev toric code, colour code and lattice gauge theories with spin-liquid phases. In addition, our approach provides the ingredients for dissipative preparation of entangled states based on engineering n-particle reservoir couplings. The basic building blocks of our architecture are efficient and high-fidelity n-qubit entangling gates using auxiliary Rydberg atoms, including a possible dissipative time step through optical pumping. This enables mimicking the time evolution of the system by a sequence of fast, parallel and high-fidelity n-particle coherent and dissipative Rydberg gates.

  • 出版日期2010-5