摘要

Tauopathies represent a group of neurodegenerative disorder which are characterized by the presence of tau positive specialized argyrophilic and insoluble intraneuronal and glial fibrillar lesions known as neurofibrillary tangles (NFTs). Tau is a neuron specific microtubule binding protein which is required for the integrity and functioning of neuronal cells, and hyperphosphorylation of tau and its subsequent aggregation and paired helical filaments (PHFs) and NFTs has emerged as one of the major pathogenic mechanisms of tauopathies in human and mammalian model systems. Modeling of human tauopathies in Drosophila results in manifestation of associated phenotypes, and a recent study has demonstrated that similar to human and mammalian models, accumulation of insoluble tau aggregates in the form of typical neurotoxic NFTs triggers the pathogenesis of tauopathies in fly models. In view of the availability of remarkable genetic tools, Drosophila tau models could be extremely useful for in-depth analysis of the role of NFTs in neurodegeneration and tau aetiology, and also for the screening of novel gene(s) and molecule(s) which suppress the toxicity of tau aggregates.

  • 出版日期2018-7