Mouse Prkar1a haploinsufficiency leads to an increase in tumors in the Trp53(+/-) or Rb1(+/-) backgrounds and chemically induced skin papillomas by dysregulation of the cell cycle and Wnt signaling

作者:Almeida Madson Q*; Muchow Michael; Boikos Sosipatros; Bauer Andrew J; Griffin Kurt J; Tsang Kit Man; Cheadle Chris; Watkins Tonya; Wen Feng; Starost Matthew F; Bossis Ioannis; Nesterova Maria; Stratakis Constantine A
来源:Human Molecular Genetics, 2010, 19(8): 1387-1398.
DOI:10.1093/hmg/ddq014

摘要

PRKAR1A inactivation leads to dysregulated cAMP signaling and Carney complex (CNC) in humans, a syndrome associated with skin, endocrine and other tumors. The CNC phenotype is not easily explained by the ubiquitous cAMP signaling defect; furthermore, Prkar1a(+/-) mice did not develop skin and other CNC tumors. To identify whether a Prkar1a defect is truly a generic but weak tumorigenic signal that depends on tissue-specific or other factors, we investigated Prkar1a(+/-) mice when bred within the Rb1(+/-) or Trp53(+/-) backgrounds, or treated with a two-step skin carcinogenesis protocol. Prkar1a(+/-) Trp53(+/-) mice developed more sarcomas than Trp53(+/-) mice (P < 0.05) and Prkar1a(+/-) Rb1(+/-) mice grew more ( and larger) pituitary and thyroid tumors than Rb1(+/-) mice. All mice with double heterozygosity had significantly reduced life-spans compared with their single-heterozygous counterparts. Prkar1a(+/-) mice also developed more papillomas than wild-type animals. A whole-genome transcriptome profiling of tumors produced by all three models identified Wnt signaling as the main pathway activated by abnormal cAMP signaling, along with cell cycle abnormalities; all changes were confirmed by qRT-PCR array and immunohistochemistry. siRNA down-regulation of Ctnnb1, E2f1 or Cdk4 inhibited proliferation of human adrenal cells bearing a PRKAR1A-inactivating mutation and Prkar1a(+/-) mouse embryonic fibroblasts and arrested both cell lines at the G0/G1 phase of the cell cycle. In conclusion, Prkar1a haploinsufficiency is a relatively weak tumorigenic signal that can act synergistically with other tumor suppressor gene defects or chemicals to induce tumors, mostly through Wnt-signaling activation and cell cycle dysregulation, consistent with studies in human neoplasms carrying PRKAR1A defects.

  • 出版日期2010-4-15
  • 单位NIH