摘要

Functionally graded plates under static and dynamic loads are investigated by the local integral equation method (LIEM) in this paper. Plate bending problem is described by the Reissner moderate thick plate theory. The governing equations for the functionally graded material with respect to the neutral plane are presented in the Laplace transform domain and therefore the in-plane and bending problems are uncoupled. Both isotropic and orthotropic material properties are considered. The local integral equation method is developed with the locally supported radial basis RBF) interpolation. As the closed forms of the local boundary integrals are obtained, there are no domain or boundary integrals to be calculated numerically in this approach. The solutions of the nodal values for the entire plate are obtained by solving a set of linear algebraic equation system with certain boundary conditions. Details of numerical procedures are presented and the accuracy and convergence characteristics of the method are examined. Several examples are presented for the functionally graded plates under static and dynamic loads and the accuracy for proposed method has been observed compared with 3D analytical solutions.

  • 出版日期2012
  • 单位Queen Mary,University of London; Queen Mary, University of London; Queen Mary University of London

全文