摘要

Over the past decade, the visual pathway in multiple sclerosis (MS) has become an important system for assessing both patient function and disease burden. Abnormalities of low-contrast acuity, long recognized as important correlates of driving, facial recognition, and other activities of daily living, are now noted to be common among patients with MS, even among those with no history of acute optic neuritis (ON). Low-contrast letter acuity scores correlate well with brain MRI lesion burden, visual-evoked potential (VEP) amplitudes, health-related quality of life (QOL), and retinal nerve fiber layer (RNFL) axonal and neuronal loss as measured by optical coherence tomography (OCT). Axonal and neuronal degeneration in MS is likely to be an important cause of visual impairment and disability, particularly among patients with progressive MS subtypes. With the advent of OCT and the use of low-contrast letter acuity charts in MS research and clinical trials, the structure-function correlations afforded by the anterior visual pathway can be assessed and potentially harnessed as a model for testing new therapies. Recent advances in OCT, such as high resolution spectral-domain techniques and computerized algorithms for image analysis, have allowed for measurement of specific retinal layers, including the ganglion cell (GCL) neuronal layer and its intimately associated, thin layer of interneurons, the inner plexiform layer (IPL). Longitudinal collaborative studies of GCL+IPL thinning and RNFL axonal loss are providing an in vivo view into neuroretinal pathology, and are providing new insights into how the visual pathway may reflect overall mechanisms of disease in MS.

  • 出版日期2013-7