Dantrolene requires Mg2+ to arrest malignant hyperthermia

作者:Choi Rocky H; Koenig Xaver; Launikonis Bradley S*
来源:Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(18): 4811-4815.
DOI:10.1073/pnas.1619835114

摘要

Malignant hyperthermia (MH) is a clinical syndrome of skeletal muscle that presents as a hypermetabolic response to volatile anesthetic gases, where susceptible persons may develop lethally high body temperatures. Genetic predisposition mainly arises from mutations on the skeletal muscle ryanodine receptor (RyR). Dantrolene is administered to alleviate MH symptoms, but its mechanism of action and its influence on the Ca2+ transients elicited by MH triggers are unknown. Here, we show that Ca2+ release in the absence of Mg2+ is unaffected by the presence of dantrolene but that dantrolene becomes increasingly effective as cytoplasmic-free [Mg2+] (free [Mg2+](cyto)) passes mMlevels. Furthermore, we found in human muscle susceptible to MH that dantrolene was ineffective at reducing halothane-induced repetitive Ca2+ waves in the presence of resting levels of free [Mg2+](cyto) (1 mM). However, an increase of free [Mg2+](cyto) to 1.5 mM could increase the period between Ca2+ waves. These results reconcile previous contradictory reports in muscle fibers and isolated RyRs, where Mg2+ is present or absent, respectively, and define the mechanism of action of dantrolene is to increase the Mg2+ affinity of the RyR (or "stabilize" the resting state of the channel) and suggest that the accumulation of the metabolite Mg2+ from MgATP hydrolysis is required to make dantrolene administration effective in arresting an MH episode.

  • 出版日期2017-5-2