摘要

Cables' in-plane nonlinear vibrations under multiple support motions with a phase lag are investigated in this paper, which is a continuation of our previous work (Guo et al. in Arch Appl Mech 1647-1663, 2016). The main results are twofold. Firstly, asymptotically reduced models for the cable's in-plane nonlinear vibrations, with or without internal resonance, excited by multiple support motions, are established using a boundary modulation approach. Two in-plane boundary dynamic coefficients are derived for characterizing moving supports' effects, which depend closely on the cable's initial sag, distinct from the out-of-plane ones Guo et al. (2016), and are also found to be equal for symmetric in-plane dynamics while opposite for antisymmetric dynamics. Secondly, cable's in-plane nonlinear responses due to multiple support motions are calculated and phase lag's dynamic effects are fully investigated. Two important factors associated with phase lags, i.e., the excitation-reduced and excitation-amplified factors, are both derived analytically, indicating theoretically that the phase lags would weaken the cable's single-mode symmetric dynamics but amplify the antisymmetric dynamics. Furthermore, through constructing frequency response diagrams, the phase lag is found to change the characteristics of cables' two-to-one modal resonant dynamics, both qualitatively and quantitatively. All these semi-analytical results obtained from the reduced models are also verified by applying the finite difference method to the cable's full model, i.e., the continuous partial differential equation.

全文