摘要

Controlling macro residual stress fields in a material while preserving a desired microstructure is often a challenging proposition. Processing techniques which induce or reduce residual stresses often also alter microstructural characteristics of the material through therrno-mechanical processes. A novel mechanical technique able to generate controlled residual stresses was developed. The method is based on a pin compression approach, and was used to produce well-controlled magnitudes and distributions of residual stresses in rectangular coupons and compact tension specimens typically used in fatigue crack growth testing. Residual stresses created through this method were first computationally modeled with finite element analysis, and then experimentally reproduced with various levels of pin compression. The magnitudes and distributions of residual stresses in experimental specimens were independently assessed with fracture mechanics methods and good correspondence was found between residual stresses produced using the pin compression and processing techniques. Fatigue crack growth data generated from specimens with low residual stresses, high residual stresses resulting from processing, and high residual stresses introduced through the new pin compression technique were compared and validated. The developed method is proposed to facilitate the acquisition and analysis of fatigue crack growth data generated in residual stresses, validate residual stress corrective models, and verify fatigue crack growth simulations and life predictions in the presence of residual stresses.

  • 出版日期2011-4