摘要

In order to elucidate the processing mechanism of the lysosomal cysteine proteinase, cathepsin B, in mammalian cells, recombinant rat and human cathepsin B precursors were expressed in Saccharomyces cerevisiae. The active-site cysteine residue was changed to serine to prevent autoprocessing. When the purified proenzymes were incubated with the soluble fraction of post-nuclear organelles obtained from human hepatoma HepG2 cells, processing to a 33 kDa form corresponding to the mature endogenous single-chain enzyme was observed. Inhibitors of metallo-, serine and aspartic proteinases exerted no significant effect on procathepsin B processing in vitro. However, the processing activity was effectively blocked by cysteine proteinase inhibitors, in particular E-64 and its cathepsin-B-selective derivative CA-074. Processing positions were identified by using anti-peptide antibodies specific for epitopes in the N- and C-terminal cleavage regions. The single-chain form produced in vitro was thus shown to contain an N-terminal extension of at least four residues relative to the mature lysosomal enzyme, as well as a C-terminal extension present in the proenzyme but usually absent in fully processed cathepsin B. On expression of the wild-type proenzyme in yeast, procathepsin B undergoes autoprocessing, yielding a single-chain form of the active enzyme, which contains similar N- and C-terminal extensions. These results indicate that maturation of procathepsin B in vivo in mammalian tissues relies on the proteolytic activity of cathepsin B itself.

  • 出版日期1993-7-15