摘要

Chromosomal inversions are ubiquitous in nature and of great significance for understanding adaptation and speciation. Inversions were the first markers used to investigate the genetic structure of natural populations, leading to the concept of coadapted gene complexes and theories concerning founder effects and genetic drift in small populations. However, we still lack elements of a general theory accounting for the origins and distribution of inversions in nature. Here, we use computer simulations to show that a "mixed geographic mode" of evolution involving allopatric separation of populations followed by secondary contact and gene flow generates chromosomal divergence by natural selection under wider conditions than previous hypotheses. This occurs because inversions arising in allopatry contain a full complement of locally adapted genes. Once gene flow ensues, reduced recombination within inversions keeps these favorable genotypic combinations intact, resulting in inverted genomic regions being favored over collinear regions. This process allows inversions to establish to high frequencies. Our model can account for several classic patterns in the geographic distribution of inversions and highlights how selection on standing genetic variation allows rapid chromosomal evolution without the waiting time for new mutations. As inversion differences often separate closely related taxa, mixed modes of divergence could be common.

  • 出版日期2011-8