A Monte Carlo model for the internal dosimetry of choroid plexuses in nuclear medicine procedures

作者:Amato Ernesto; Cicone Francesco; Auditore Lucrezia*; Baldari Sergio; Prior John O; Gnesin Silvano
来源:Physica Medica, 2018, 49: 52-57.
DOI:10.1016/j.ejmp.2018.05.005

摘要

Choroid plexuses are vascular structures located in the brain ventricles, showing specific uptake of some diagnostic and therapeutic radiopharmaceuticals currently under clinical investigation, such as integrin-binding arginine-glycine-aspartic acid (RGD) peptides. No specific geometry for choroid plexuses has been implemented in commercially available software for internal dosimetry.
The aims of the present study were to assess the dependence of absorbed dose to the choroid plexuses on the organ geometry implemented in Monte Carlo simulations, and to propose an analytical model for the internal dosimetry of these structures for F-18, Cu-64, Cu-67, Ga-68, Y-90, I-131 and Lu-177 nuclides. A GAMOS Monte Carlo simulation based on direct organ segmentation was taken as the gold standard to validate a second simulation based on a simplified geometrical model of the choroid plexuses. Both simulations were compared with the OLINDA/EXM sphere model.
The gold standard and the simplified geometrical model gave similar dosimetry results (dose difference < 3.5%), indicating that the latter can be considered as a satisfactory approximation of the real geometry. In contrast, the sphere model systematically overestimated the absorbed dose compared to both Monte Carlo models (range: 4-50% dose difference), depending on the isotope energy and organ mass. Therefore, the simplified geometric model was adopted to introduce an analytical approach for choroid plexuses dosimetry in the mass range 2-16 g. The proposed model enables the estimation of the choroid plexuses dose by a simple biparametric function, once the organ mass and the residence time of the radiopharmaceutical under investigation are provided.

  • 出版日期2018-5