摘要

A dissipative particle dynamics simulation technique was used to investigate the effect of molecular architecture of star-block copolymer on the patterned structure in a nanodroplet. With increasing the ratio of solvophilic to block length to solvophobic block length(R-H/T), solvophobic sphere, ordered hexagonal phase, onion phase, perforated onion phase and flocculent phase are formed, respectively. Since onion phase has potential application in controlled drug release, it has received wide attention experimentally and theoretically. Our simulation indicates onion phase forms at a certain R-H/T(close to but less than 1). A star-block copolymer molecule has two conformations in onion phase: either fully located in a shell or shared by two neighboring shells. Central structure affects onion's final shape. The molecular number of the copolymer in each shell is a quadratic function of the shell's radius. The arm number of star-block copolymer has little influence on onion's structure, but slightly affects the solvent content. Additionally, we studied the influence of arm length on onion's structure.