摘要

Thioglycolic acid modified superparamagnetic iron oxide nanoparticles (TG-APTS-SPION) were synthesized by using (3-aminopropyl) triethoxysilane (APTS) and thioglycolic acid (TG). Actin was immobilized on the nanoparticle surfaces. Binding amount of the actin (Act) on TG-APTS-SPIONs was determined by using a calibration curve equation that was drawn using fluorescence spectra at 280 and 342 nm of excitation and emission wavelengths. Anti-Actin (anti-Act) was interacted with the actin immobilized TG-APTS-SPIONs as primary antibody. Horse radish peroxidase (HRP) was also interacted with antibody conjugated nanoparticles as secondary antibody. The binding capacity of primary and secondary antibodies was also estimated by fluorescence spectroscopy. Scanning electron microscopy (SEM), Infrared spectroscopy (FTIR) and energy dispersive X-ray (EDX) analysis were also clarified binding of the protein and antibodies to the nanoparticles' surfaces. Western blot analysis was also done for actin conjuction with anti Act antibody to confirm binding of the antibody to the protein.

  • 出版日期2015-1