摘要

This study elucidates the association of acrylamide metabolites, N-acetyl-S-(2-carbamoylethyl)-cysteine (AAMA), N-acetyl-S-(1-carbamoyl-2-hydroxyethyl)-cysteine (GAMA2), and N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-cysteine (GAMA3) in urine with genetic polymorphisms of the metabolic enzymes cytochrome P450 2E1 (CYP2E1), microsomal epoxide hydrolase (mEH) in exon 3 and exon 4, glutathione transferase theta (GSTT1) and mu (GSTM1), involved in the activation and detoxification of acrylamide (AA) in humans. Eighty-five workers were recruited, including 51 AA-exposed workers and 34 administrative staffs serve as controls. Personal air sampling was performed for the exposed workers. Each subject provided pre- and post-shift urine samples and blood samples. Urinary AAMA, GAMA2 and GAMA3 levels were simultaneously quantified using liquid chromatography-electronspray ionization/tandem mass spectrometry (LC-ESI-MS/MS). CYP2E1, mEH (in exon 3 and exon 4), GSTT1, and GSTM1 were analyzed using polymerase chain reaction (PCR). Our results reveal that AA personal exposures ranged from 4.37 x 10(-3) to 113.61 mu g/m(3) with a mean at 15.36 mu g/m(3). The AAMA, GAMA2, and GAMA3 levels in the exposed group significantly exceeded those in controls. The GAMAs (the sum of GAMA2 and GAMA3)/AAMA ratios, potentially reflecting the proportion of AA metabolized to glycidamide (GA), varied from 0.003 to 0.456, and indicate high inter-individual variability in the metabolism of AA to GA in this study population. Multivariate regression analysis demonstrates that GSTM1 genotypes significantly modify the excretion of urinary AAMA and the GAMAs/AAMA ratio, exon 4 of mEH was significantly associated with the urinary GAMAs levels after adjustment for AA exposures. These results suggest that mEH and/or GSTM1 may be associated with the formation of urinary AAMA and GAMAs. Further study may be needed to shed light on the role of both enzymes in AA metabolism.

  • 出版日期2011-6-10