摘要

Background: Imbalance in cofactors causing the accumulation of intermediates in biosynthesis pathways is a frequently occurring problem in metabolic engineering when optimizing a production pathway in a microorganism. In our previous study, a single knock-out Citrobacter werkmanii Delta dhaD was constructed for improved 1,3-propanediol (PDO) production. Instead of an enhanced PDO concentration on this strain, the gene knock-out led to the accumulation of the toxic intermediate 3-hydroxypropionaldehyde (3-HPA). The hypothesis was emerged that the accumulation of this toxic intermediate, 3-HPA, is due to a cofactor imbalance, i.e. to the limited supply of reducing equivalents (NADH). Here, this bottleneck is alleviated by rationally engineering cell metabolism to balance the cofactor supply. Results: By eliminating non-essential NADH consuming enzymes (such as lactate dehydrogenase coded by ldhA, and ethanol dehydrogenase coded by adhE) or by increasing NADH producing enzymes, the accumulation of 3-HPA is minimized. Combining the above modifications in C. werkmanii Delta dhaD resulted in the strain C. werkmanii Delta dhaD Delta ldhA.adhE::ChlFRT which provided the maximum theoretical yield of 1.00 +/- 0.03 mol PDO/mol glycerol when grown on glucose/glycerol (0.33 molar ratio) on flask scale under anaerobic conditions. On bioreactor scale, the yield decreased to 0.73 +/- 0.01 mol PDO/mol glycerol although no 3-HPA could be measured, which indicates the existence of a sink of glycerol by a putative glycerol dehydrogenase, channeling glycerol to the central metabolism. Conclusions: In this study, a multiple knock-out was created in Citrobacter species for the first time. As a result, the concentration of the toxic intermediate 3-HPA was reduced to below the detection limit and the maximal theoretical PDO yield on glycerol was reached.

  • 出版日期2016-1-28