摘要

Large eddy simulations at Re = 23 000 are used to investigate the drag on a two-dimensional elongated cylinder caused by rear-edge periodic actuation, with particular focus on an optimum open-loop configuration. The 3.64 (length/thickness) aspect-ratio cylinder has a rectangular cross-section with rounded leading corners, representing the two-dimensional cross-section of the now generic Ahmed-body geometry. The simulations show that the optimum drag reduction occurs in the forcing Strouhal number range of 0.09 <= St(act) <= 0.135, which is approximately half of the Strouhal number corresponding to shedding of von Karman vortices into the wake for the natural case. This result agrees well with recent experiments of Henning et al. (Active Flow Control, vol. 95, 2007, pp. 369-390). A thorough transient wake analysis employing dynamic mode decomposition is conducted for all cases, with special attention paid to the Koopman modes of the wake flow and vortex progression downstream. Two modes are found to coexist in all cases, the superimposition of which recovers the majority of features observed in the flow. Symmetric vortex shedding in the near wake, which effectively extends the mean recirculation bubble, is shown to be the major mechanism in lowering the drag. This is associated with opposite-signed vortices reducing the influence of natural vortex shedding, resulting in an increase in the pressure in the near wake, while the characteristic wake antisymmetry returns further downstream. Lower-frequency actuation is shown to create larger near-wake symmetric vortices, which improves the effectiveness of this process.

  • 出版日期2014-1