摘要

Pseudomonas cichorii causes rot on lettuce leaves, distinct from the necrotic spots of infected eggplant leaves. On lettuce leaves, P. cichorii invades intercellular spaces through stomata and grows vigorously, causing rot on the leaves. Surprisingly, P. cichorii does not produce pectate lyase, the most important enzyme for degrading plant cell walls. Alternatively, infection with P. cichorii causes heterochromatin condensation and DNA laddering in lettuce cells, followed by induced cell death, which results in disease symptoms. Thus, apoptotic programmed cell death (PCD) is associated with the symptoms on lettuce leaves. Although PCD in P. cichorii-infected eggplant leaves is also associated with necrotic spots caused by the bacteria, there are differences in the responses of the two hosts. P. cichorii harbors the N-acetyltransferase family gene (pat) and the hrp genes (hrp) encoding a type III secretion system, adjacent to an aldehyde dehydrogenase gene (aldH). The virulence of P. cichorii is hrp-dependent in eggplant, but not in lettuce. Furthermore, hrp, pat and aldH are implicated in the diversity of P. cichorii virulence on susceptible Asteraceae species. The involvement of hrp, aldH and pat in bacterial virulence on the respective species has no relationship with the phylogeny of the plants species. When these results are considered together, P. cichorii has multiple virulence determinants. The involvement of not only hrp but also aldH and pat in P. cichorii virulence arose after species diversification of host plants. Host responses implicated in symptom development have been responsible for the development of virulence determinants of P. cichorii.

  • 出版日期2013-11