摘要

Numerical mold-flow simulations and experimental measurements for injection-molded lenses have been investigated in form accuracy on a two-cavity mold with various process conditions. First, form profiles of the molded lenses have been measured together with the corresponding simulated mold-temperature distribution and displacement distribution of the lens in the z direction. A flow-through type layout of cooling channels has been devised for balance of mold-temperature distribution in mold cavities with various parametric distances for assessments in uniformity of temperature distribution. Finally, a compression-molding process is proposed for the post-process of birefringence relaxation as well as adequate form accuracy of lenses. In conclusion, optimization of process parameters to achieve good form accuracy in a multicavity mold with symmetric geometry but nonuniform cooling conditions is difficult. A good design of cooling channels plus optimized process conditions could provide uniform mold-temperature distribution so that molded lenses of good quality would be possible. Then, the profile deviation of lenses could be further compensated by profile geometry corrections. In conclusion, the post-compression-molding process could make birefringence-free plastic lenses with good form accuracy.