摘要

The dredged soil dumped into a reclamation facility is generally heterogeneous he reclamation is executed using hydraulic transportation through pipes, large particles will be deposited around their outlets, and fine particles will be deposited apart from those outlets, resulting in significant grain size segregation. Therefore, ground improvement by applying a preload or vacuum to the dredged soil deposit with prefabricated vertical drains (PVDs) may result in an unexpected differential settlement. In the present study, partial sandy layers in a dredged soil deposit were identified as three-dimensional information using the penetration resistance of the mandrel in the PVD installation, which was recorded as dense information for a wide region. It was clarified that the depth profile of the penetration resistance of the mandrel in the PVD installation was useful for investigating the soil stratigraphy, because it is closely related to the depth profile of the tip resistance in cone penetration tests (CPTU). The relative penetration resistance, defined as the penetration resistance eliminating the data trend that reflects the effects of the overburden stress, shear strength, sleeve friction and buoyance, is useful for identifying the partial sandy layers in a dredged soil deposit. A classification equation was proposed for identifying the partial sandy layers. Firstly, the depth profile without the sandy layer was approximated, and then the threshold value of 1.0 MN/m(2) was used to identify the partial sandy layer. To verify the availability of this proposed method, the depth profiles were compared with the results of CPTU tests. In addition, the predicted settlement, calculated on the basis of the stratigraphy obtained using the penetration resistance of the PVDs, was compared with the ground surface profile leveled after vacuum consolidation.

  • 出版日期2014-10